

R4 Programming Tutorial
Jussi Härkönen

Version 1.0

 R4 Programming Tutorial

Table of Contents
1 Introduction ______________________________ 3

1.1 Setting up the R4 Development Environment.. 3
1.2 R4 Subdirectories.. 4

2 R4 Programming __________________________ 4

2.1 Overview to Custom Scene File Structure.. 5
2.2 Number Data Types – int and float ... 6
2.2.1 The const Specifier... 6
2.2.2 Arrays... 7
2.2.3 Strings .. 7
2.3 Conditionality.. 7
2.3.1 If and Else .. 8
2.4 Loops .. 8
2.5 Functions.. 9
2.5.1 The Functions init(), reset() and render() 9
2.6 Native Functions and Variables... 9
2.6.1 Interaction with Music ... 9
2.6.2 Time Variables .. 10
2.7 Modules.. 10
2.7.1 Accessing Module Member Variables... 10
2.8 Shaders... 11
2.9 Overlays ... 13
2.10 Faders... 13
2.11 Writing Comprehensible Code .. 14

3 Scene Walkthrough – The Caribbean Sea_____ 14

3.1 Waveforms and Flowfields... 15
3.1.1 Header Section .. 15
3.1.2 Variable Definitions .. 15
3.1.3 Initialization... 16
3.1.4 Rendering... 17
3.2 Using Textures... 18
3.2.1 Modifying the Scene.. 19
3.3 Further Reading.. 19

Appendix I – Compile errors __________________ 20

Appendix II – Version History _________________ 20

 R4 Programming Tutorial

1 Introduction
R4 is a standalone OpenGL accelerated music visualization program aiming to produce
stunning 3D graphics in real time. It is designed to be highly customizable and contains a
high speed scripting engine. R4 also has a built-in web server that allows the user to
control the visuals from any other network-connected computer without disrupting the
visuals. R4 and its precursor, R2/Extreme, were created by Gordon Williams.

For users who want to create their own R4 scenes, R4 features sophisticated tools for
2D and 3D graphics. The tools include numerous highly configurable and textured 3D
object structures, morphing objects, music reactivity, support for self-repeating structures
and even a capability to incorporate live video feeds.

This tutorial aims to guide you to create your own custom scenes with R4.
Unfortunately, a little experience in some programming language is almost necessary if
you want to learn R4 programming. However, if you are familiar with C programming,
learning R4 will be relatively easy. Knowing basics in OpenGL programming will also
help you.

This tutorial is not a complete documentation of R4. However, it should give you the
basic knowledge on how R4 scenes work and help you to continue exploring R4 on your
own.

Some files associated with this tutorial can be found in the subfolders of the
directory where you extracted the tutorial archive. The files are discussed later in this
tutorial.

If you find errors or mistakes in this tutorial, want to send me feedback or if you
want to contribute to developing this tutorial, please send me email to the address Violet
at VioletIndustries dot com.

1.1 Setting up the R4 Development Environment
In this section, instructions for installing the necessary tools for R4 programming are
given. If you have not done it yet, go to http://www.rabidhamster.org/R4/ to download
and install the newest version of R4. The default installation directory is C:\Program
Files\R4. Installation instructions for Crimson Editor are given below. Crimson Editor is
a useful free programming editor but any other text editor can be used as well.

Go to http://www.crimsoneditor.com/, download Crimson Editor and install it (the
default folder is C:\Program Files\Crimson Editor). Then extract the contents of
r4_syntax.zip found in R4 Syntax for Crimson Editor directory to the folder you
installed Crimson Editor. This will install colour highlighting for the R4 programming
language.

To add a macro that runs R4, run Crimson Editor and select Conf. User Tools… in
the Tools menu. Fill the fields according to the values in Table 1.1, check the Save before
execute checkbox and select OK. Now you can edit R4 custom scene files in R4, execute
them by simply pressing F5 or selecting Run R4 from the Tools menu. The R4 file you
are editing must be saved to R4\data\predefine directory. It is a good idea to create a
subfolder R4\data\predefine\disable and move all .r4 files from predefine directory to
predefine\disabled scenes. Save only the file you are editing to the predefine directory.
Consequently, it will be loaded when you run R4.

 R4 Programming Tutorial

Table 1.1 A user-defined macro configuration for launching R4.

Field Value
Menu Text Run R4
Command R4.exe in R4 installation directory (default is C:\Program

Files\R4\R4.exe)
Argument (Empty)
Initial Dir R4 installation directory (default is C:\Program Files\R4)
Hot Key F5 (or any other key)

You can also configure a key in R4 to reload a scene. Run R4 in Crimson Editor by

pressing F5. Press ESC to bring up the menu and select Settings, Keys, Assign a key, F5,
<<< scene keys >>>, Reload Scene (BETA). Now you can keep R4 running while you
work with Crimson Editor and reload the scene to R4 by activating the R4 window and
pressing F5.

1.2 R4 Subdirectories
It is essential to know what can be find in R4 subdirectories. The contents are described
in Table 1.2. The most important directory is R4\data\predefine where you should save
your custom scene file. If you use custom textures, water morphs or point morphs, they
should be saved to the corresponding directories R4\data\tex, R4\data\watermorph and
r4\data\pointmorph, respectively.

Table 1.2 R4 subdirectories and their contents.

Directory File(s) Description
R4\dll\ *.r4 Definitions of modules available in R4

brander.html Brander wizard instructions
readme.html Readme file containing general information

about R4
script.html Available script commands

R4\docs

shader.txt Shader commands
R4\utils\brander R4Brander.exe R4 brander wizard
R4\data\model *.raw, *.asc,

*.md2
3D Model files

R4\data\pointmorph *.PointMorph Point morph files
R4\data\predefine *.r4 Load directory for R4 scene files
R4\data\tex *.jpg, *.png, etc. Textures used for scenes
R4\data\watermorph *. watermorph Watermorph files

2 R4 Programming
In this chapter, R4 programming elements and syntax are discussed. Because the R4
programming language is basically a stripped-down version of C, learning R4
programming is much easier if you are familiar with C/C++ or Java.

 R4 Programming Tutorial

A custom scene (simply referred as scene1) defines what R4 should draw onto the
screen. Basically, a custom scene is a program that is interpreted by the R4 scripting
engine. Scenes are stored in .r4 files.

In general, all R4 identifiers are case insensitive, that is, the lower and upper case
letters are used interchangeably. All rows, excluding conditional expressions, should end
with semicolon ’;’.

2.1 Overview to Custom Scene File Structure
An R4 custom scene file consists of a header section, variable definitions and function
definitions. The modules to be included to the scene are defined in the header. In
addition, the header includes scene name and author fields. A header looks like this:

scene (
 "name" = "Scene Name";
 "author" = "Author Name";
 MODULETYPE1 moduleName1(moduleParameters1);
 MODULETYPE2 moduleName2(moduleParameters2);
 // ...more module definitions
)

This defines a scene containing module object instances named moduleName1 and
moduleName2 of type MODULETYPE1 and MODULETYPE2, respectively. For
example, defining

scene (
 "name" = "Example Scene";
 "author" = "Jussi Härkönen";
 SOLID background();
 TEXTURE texFish();
 MEDUSA fish(background, texFish);
)

creates a MEDUSA module called fish that is drawn on background and that uses the
texture texFish.

In addition to the header, you should define init, render and reset functions
according to the syntax

void init() {
 // Initialization
}

void reset() {
 // Reset
}

void render() {
 // Rendering
}

The code inside the curly braces after void init() will be executed when R4 loads
the scene. reset() is called just before R4 starts drawing the scene and render() is
called every time before a frame is drawn. Consequently, you should place your
initialization code to init(), rendering and scene updating code to render() and
reset code to reset().

User-defined variables are defined according to the syntax

1 In Finnish, scene should be pronounced with ‘k’ as ‘skene’.

 R4 Programming Tutorial

vartype varName;
const vartype varName = constValue;

Vartype specifies the variable type and varName the variable name. You can define a
variable with a constant value by using the const keyword. For example,

int numFishes;
const int MAX_NUM_FISHES = 10;

defines an integer variable numFishes and an integer constant MAX_NUM_FISHES.
You cannot change the value of a variable defined with the keyword const after its
definition or you will get a compile error when you try to run the scene. In addition, if
you want to initialize your not const-defined variables, you have to do it in the
init() function. Note that when you define a floating point constant of type const float,
you have to specify at least one decimal place or you will get a compiler error.

2.2 Number Data Types – int and float
There are two different classes of data types – modules that are used in the scene header
specification, and the int and float data types used for custom variables. Here,
float and int data types are discussed.

The values in all variables and arrays is undefined scene start-up. If you want to
initialize your variables, you should do the initialization in the init() or reset()
function.

You can define several variables on a same row by writing
varType var1, var2, var3;

However, this syntax cannot be used with the const specifier. You can set the value of a
variable with the equality operator =. Furthermore, several variables can be given the
same value by writing

var1 = var2 = var3 = varValue;
Note that R4 defines the data type of a number based on the existence of a decimal

point. Consequently, if var1 is an integer and var2 a floating point number, the
expression

var2 = var1 / 5;
would result in integer division returning an integer to var2. However, writing

var2 = var1 / 5.0;
would result in a floating point number.

2.2.1 The const Specifier
You can use the const specifier with float and int types. However, you cannot use
other constants or carry out mathematical operations when you define constants. For
example, the definitions

const int a = 4 + 5; // error
or

const int a = 4; // ok
const int b = a; // error

would generate an error.
Note that when you define a floating-point constant, you have to define at least one

decimal, even if it is zero. Otherwise you will get a “Syntax error – wanted <floating
point>” compile error. Furthermore, constants must be nonnegative.

It is recommended to use constants defined with the const keyword instead of
magic numbers in your code. This is very helpful if you want to change the value of a

 R4 Programming Tutorial

constant used in several places in the code. It will also make the code more readable for
you and for others.

2.2.2 Arrays
Furthermore, you can define arrays of types float and int. Arrays are specified
according to the syntax

vartype arrayName[numElements];
where numElements specifies the number of elements in the array. You cannot use the
const specifier with arrays. The elements should be indexed from 0 to
numElements-1. Using larger indices than specified as the array size may not cause an
error, but will overwrite the data in other scenes and generally make R4 unstable. You
should therefore always use indices from 0 to numElements-1.

2.2.3 Strings
Strings are represented as integer arrays in R4. If you define an integer array

int string[20];
You can copy a text string into string with the command

strcpy(string, "String to be copied");
A pointer to the string array is denoted with the ‘*’ character, for example *string.
This is used in some native R4 function definitions.

2.3 Conditionality
A boolean variable can have one of the two values true and false. As in almost every
programming language, true is represented by 1 and false by 0. Logical expressions for
comparing numbers can be constructed using relational operators. The available
operators are listed in Table 2.3.

Table 2.3 Available operators in logical expressions.

Operator Description
== Equal to
!= Not equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to

Assuming you have defined the integers i and retVal, you can, for example, write
i = 5;
retVal = i == 5;

Because the expression i == 5 is true, this will insert 1 (that is, true) to retVal.
Writing

i = 0;
retVal = i > 0;

inserts 0 into retVal, as the expression i > 0 is false. Furthermore, you can combine
logical expressions with the ‘and’ operator & and the ‘or’ operator |. Writing

i = 1;
retVal1 = (1 < i) & (i < 10);
retVal2 = (i == 0) | (i == 1);

 R4 Programming Tutorial

will insert 0 to retVal1 (as 1 is not in the open interval]1, 10[and (1 < i) is false)
and 1 to retVal2 (as i == 1 is true).

2.3.1 If and Else
You can use the logical expressions discussed above to control program execution flow.
You can do this with the if statement defined according to the syntax

if (<conditional expression 1>) {
 // Code executed if the expression 1 is true
}
else if (<conditional expression 2>) {
 // Code executed if expr 2 is true and expr1 is false
}
else {
 // Executed if none of the if/else if statements is true
}

If the conditional code consists only of one line, you can leave out the curly braces. For
example,

if (i < 0)
 numFishes = 0;
else if (i <= 10) {
 // Curly braces are needed
 numFishes = i;
 fishAdded();
}
else
 numFishes = 10;

will set numFishes to i if i is between 0 and 10. Note that if the one of the conditional
expressions is true, the following else if expressions are not evaluated even if they
would be true.

2.4 Loops
You can use for, while and do-while loops. The syntaxes for the different loops are

for (loopVar = initVal; <bool expression>; <update loopVar>) {
 <loop code>
}

while (<boolean expression>) {
 <loop code>
}

do {
 <loop code>
} while (<boolean expression>)

For example, assuming int i has been defined, you can write
for (i = 0; i < numFishes; i=i+1)
 fishAge[i] = fishAge[i] + 1; // Increase fish age

while (fishFood < numFishes) {
 numFishes = numFishes – 1;
 killFishes = killFishes + 1;
}

do {

 R4 Programming Tutorial

 killFish();
 killFishes = killFishes – 1;
} while (killFishes > 0)

As for if expressions, you can leave out the curly braces if the loop code only contains
one row of code. You should note that unlike C and Java, R4 contains no ++ or --
operators.

2.5 Functions
In addition to the functions init(), reset() and render(), you can define your
own functions. Functions are defined according to the syntax

returnType functionName(<parameter list>) {
 <function code>
 result = returnValue;
}

You can, for example, define a function
float randNum(float minVal, float maxVal) {
 // Return a random number between minVal and maxVal
 result = minVal + ((maxVal – minVal) * rand());
}

This function will return a random number between minVal and maxVal. The return
value is assigned to a variable labelled result. You can use the function to assign the
return value to a variable var by writing

val = randNum(-1, 1);
If the return type of a function is void, the function returns no value. It is impossible to
use arrays as return values or function parameters. The functions must be defined in the
scene file before they can be called.

2.5.1 The Functions init(), reset() and render()
When R4 loads the scene for the first time, the init() function is called. Also
reset() is called after the init call at first start-up. Furthermore, reset() is called
just before R4 decides to change to another scene. It is noteworthy that the variables of a
scene are retained during the whole R4 session. Consequently, you should place the
initialization of the variables that are altered in render() to the reset() function.
Otherwise, when the scene is loaded for second time, the variable values from the
previous scene load are used. This may produce unwanted results.

2.6 Native Functions and Variables
The native functions and variables available in R4 are defined in the file native.r4
located in R4\data directory. As most of them are quite self-explanatory, only the sound
interaction and time variables are discussed here.

Note, however, that trying to use the pi constant will generate a compile error.
Instead you can use the pi() function or explicitly define pi as a constant in your code.

2.6.1 Interaction with Music
R4 provides some variables that contain information about the music currently playing.
These variables are listed in Table 2.4.

soundA, soundB and soundC are suitable to be used in, for example, gain
calculation for different purposes to make your scene react to music. The waveLeft and

 R4 Programming Tutorial

0

waveRight arrays can be used to draw the signal curve, that is, a waveform.
specLeft and specRight provide the Fourier transform of the signal. The elements
in the beginning of the arrays describe the magnitude of low frequencies, whereas the
elements towards the end of the arrays describe the magnitude of high frequencies.

Table 2.4 Variables for music interaction.

Type Variable name Description
float soundA, soundB soundC Change in bass, middle and treble

frequencies, respectively.
float array waveLeft[512],

waveRight[512]
The signal values.

float array specLeft[512],
specRight[512]

The frequency content of the signal (the
Fourier transform).

2.6.2 Time Variables
There are two available variables indicating time. The variable time gives the time
elapsed since the scene start-up and the variable timePass gives the time elapsed since
the previous render() call. These variables are essential to make a scene change as a
function of time.

2.7 Modules
The modules used in a scene must be defined in the scene header. A background module
and a varying number of input modules must be defined for most of the modules.

Modules are defined according to the syntax
MODULETYPE1 moduleName1(background,input1,input2,...) xz, yz;

where background is used as background for the module and the following input
modules are usually used as textures. The optional parameters xz and yz specify the size
of the module output. xz and yz should be greater than or equal to 16 and be of type n2 ,
where n is an integer.

Modules usually draw textured objects onto the background. An arbitrary number of
modules can be defined, and the last defined module will be drawn onto the screen. The
module used as background or input for other modules must have been defined earlier.
Consequently, the first module must be a module that does not need a background or
input module1. It is usually a TEXTURE or a SOLID module.

2.7.1 Accessing Module Member Variables
Most of the modules contain member variables that define the internal activity of the
module. You can access the variables with the point operator ‘.’ after the module name.
If a SOLID object labelled red has been defined, its col member variable can be set by
writing

red.col = rgb(1, 0, 0);
This will set the colour of the SOLID object to red. The rgb function converts the red,
green and blue floating point colour components into a 32-bit integer representation of
the same colour.

1 Faders and overlays make an exception to this rule as they can access external surfaces.
Faders and overlays are discussed in sections 2.9 and 0.

 R4 Programming Tutorial

1

2.8 Shaders
Many of the available modules include a string member variable labelled shader.
Shaders define how the modules or textures are drawn onto the screen. Most of the
shader commands are shorthand for OpenGL functions that will be called.

You can set the shader string of a module with the command
strcpy(moduleName.shader, "ShaderString");

This is usually done in the init() function. If the module contains multiple skins, you
must specify the skin pointer as one in a shader array, that is,

strcpy(moduleName.shader[skinIndex], "ShaderString");
where skinIndex gives the number (starting from 0) of the skin. The TUNNEL module,
for example, supports up to 4 skins that are numbered from 0 to 3.

Every command in a shader is represented by a single character, followed by more
characters representing parameters. All commands are separated by a semicolon ';'.
Furthermore, every shader must end with a semicolon. The available shader commands
and their descriptions are given in Table 2.5.

The available blending modes used by the blending mode command B are listed in
Table 2.6. The blending mode defines how the resulting pixel colour is calculated using
source and destination texture pixels. If the source colour is denoted with Sc , the
destination colour with Dc and the source and destination blending coefficients with SB
and DB , the result of the rendering operation is given by the equation

DDSS cBcBc += . (1)

Some common blending modes are given in Table 2.7. Another interesting blending
mode is Bcc. According to Table 2.6, Bcc means that DS cB −= 1 and SD cB −= 1 .
Inserting these to equation (1) gives

DSDS

DSSD

cccc

ccccc

2
)1()1(

−+=
−+−=

Inserting different values to the equation reveals that the result is large if either Sc or
Dc is large. If they both are small or large, the resulting colour value is small. If the

source texture is black and white, this corresponds to using the source as inverting mask,
inverting the colour for 1=Sc and leaving the colour unchanged for 0=Sc .

 R4 Programming Tutorial

2

Table 2.5 Available shader commands.
Letter Format
T Tx;
Parameters – x: Number of texture starting from 0.
Description: Specifies the number of texture to be used. You can only use one texture for
each skin of a module.
B Bxy;
Parameters – x/y: Source/destination colour multiplier.
Description: Specifies the blending mode. See Table 2.6 for available modes.
W Wx;
Parameters – x: A floating point wireframe line width. Although this is not required.
Description: The vertices are drawn using wireframes instead of textures
D D;
Parameters: None.
Description: Enables depth testing and clears the depth buffer.
d d;
Parameters: None.
Description: Enables depth testing but does not clear the depth buffer. This can be very
useful with transparent textures on, for example, a TUNNEL module using several skins
with different radii. The first skin with largest radius uses D to fill the depth buffer and
the other skins use d and, consequently, the same depth buffer.
F Fx;
Parameters – x: B (cull Back) or F (cull Front).
Description: Specifies the culling mode. If cull back is used, the front side of the
surfaces drawn are invisible and the back side is visible. If cull front is used, the front
side of the surfaces drawn are invisible.
C Cr,g,b,a;
Parameters – r,g,b,a: Red, green, blue and alpha values in the interval [0,1].
Description: Multiplies texture colours with the given colour coefficients.
G Gxy;
Parameters – x: S,T,R or Q specifying texture coordinate. S and T specify the x and y
coordinates, whereas R and Q are rarely used in R4.
Parameters – y: O (object linear), E (eye linear) or S (sphere map)
Description: Specifies how the texture coordinates are generated. Using GSS;GTS;
generates the x and y coordinates using sphere mapping making the texture look like a
reflection. The texture is mapped like the object would be perfectly reflective and
surrounded by an infinitely large sphere. See the liquid metal robot in Terminator 2 for an
illustration of environment mapping and the OpenGL documentation for more
information on texture generation.
P Pabx,y,z;

 R4 Programming Tutorial

3

Parameters – a: S,T,R or Q specifying texture coordinate. S and T specify the x and y
coordinates.
Parameters – b: E (eye plane), O (object plane).
Parameters – x,y,z: A floating point vector.
Description: Specifies a texture generation plane. The texture coordinate c specified by

a for a vertex),,(zyx vvv is zyxzyx zvyvxvzyxvvvc ++=⋅=),,(),,(. If, for example,)0,0,1.0(),,(=zyx ,

the texture coordinate is xzyx vvvvc 1.0001.0 =⋅+⋅+⋅= , that is, the signed distance of
the vertex from the yz -plane multiplied by 0.1. The b parameter specifies if the vertex is
given in view or world coordinates. The command
GSO;GTO;PSO0.0005,0,0;PTO0,0.0005,0; generates the x and y coordinates
as distances from the yz and xz planes, respectively.
L Lx;
Parameters – x: A floating point value specifying the amount of blur.
Description: A higher value of x will increase the blur of the texture. 0 means no blur.
This only works for static textures that were loaded from a file.

Table 2.6 Available blending mode flags.

Source colour coefficient Destination colour coefficient
Character Coefficient Character Coefficient
0 0 0 0
1 1 1 1
C Destination colour C Source colour
c 1 - destination colour c 1 - source colour
A Source alpha A Source alpha
a 1 - source alpha a 1 - source alpha
D Destination alpha D Destination alpha
d 1 - destination alpha d 1 - destination alpha
S Alpha saturate

Table 2.7 Common blending modes

Command Description
B10; Draw using source colour
BAa; Draw the source colour with transparency
B11; Additive drawing
BA1; Additive drawing using source alpha

2.9 Overlays
Overlays are basically custom scenes that are applied to the currently running scene. One
difference compared to custom scenes is that you have to start the header module with the
word OVERLAY instead of SCENE. Furthermore, you can access the currently running
scene as a module called scenefrom. The scenefrom module acts exactly as any
user-defined module. You can, for example, write in the overlay header

OVERLAY (
 SOLID black();
 WARP w(black, scenefrom);

 R4 Programming Tutorial

4

)
This will make the WARP module to be applied to the current scene output.

2.10 Faders
Faders are used in transition from one scene to another. Like overlays, faders are special
type of scenes. In the header section of the fader, you can access the scenefrom (the
previous scene) and sceneto (the target scene) modules. In the render() function,
you can access a variable labelled finished. When finished is set to 1, the fader
will exit and the target scene is rendered to the screen. Note that finished should be
reset to 0 in the reset() function in order to make the fader work more than once
during an R4 session.

2.11 Writing Comprehensible Code
There are some simple ways to make the source code more readable and easier to
understand. You can write comments in the code after two backslashes ‘//’ (but ‘/*’ like
Java and C doesn’t work). Remember that writing comments is free! When you are
writing a custom scene, you should take the time to write some comments explaining
what the code does. This will make the code more readable (or, usually, less
incomprehensible) – for others and for yourself.

It is recommended to use tabulator indentation for code segments outlined by curly
braces. Code can be further structured with empty lines separating logical sections of
code. Using empty space in equations make them easier for eye to read.

Although R4 is case insensitive, it is recommended to use cases to make the code
more readable. In general, constants and module types are written with upper case,
whereas variable names and functions are written in lower case. If a variable name
consists of several words, the first letter of every word after the first one should be upper
case. This makes the name easier to read.

The variable names should tell what the variable does. Avoid using magic variables
with meaningless names like a, b or temp2. Furthermore, avoid magic numbers in your
code and define constants instead.

Here is a small example encapsulating the above guidelines.
void fishFarm() { // Farm starts with capital
 // Indentation
 // Increase fish count
 numFishes = numFishes + 1; // Fish starts with capital

 // Empty line before if expression
 if ((numFishes == MAX_FISHES) & (fisherman == true))
 // Note empty spaces in the logical expression
 // Indentation
 // The fisherman kills all the fish
 numFishes = 0;
} // End of fishFarm

3 Scene Walkthrough – The Caribbean Sea
In this chapter, we are going to construct a simple scene called Caribbean Sea Example.
Because it primarily aims to illustrate some most common modules, it is not the most
impressive one. However, it features some essential R4 modules and techniques. The

 R4 Programming Tutorial

5

example can be found in the file Caribbean Sea Example.r4 in the tutorial subfolder
Caribbean Sea.

3.1 Waveforms and Flowfields
The waveLeft and waveRight arrays are used in order to draw a waveform, a
segment of the sound signal, with the GL module. The Caribbean Sea also features a
flowfield consisting of BUFLOAD, BUFSAVE and MAP modules.

The MAP module consists of a 32-by-24 grid of points. For every point, the user can
specify how the grid points are mapped from the source surface to the destination surface.
In other words, you can specify how much every point is offset in the horizontal and
vertical directions. Furthermore, you can specify a target colour for red, green and blue
colour components to which the colours are slowly attenuated. The map destination
surface is saved using the BUFSAVE module and it is loaded from the BUFLOAD module
during the next render() call. Thus, the mapping specified by MAP is recursively
applied. If MAP is initialized properly and something is drawn to the BUFLOAD surface,
an impression of flowing colours is obtained. Flowfields are the main components in, for
example, the MilkDrop and G-Force visualizations.

3.1.1 Header Section
SCENE (
 "name" = "The Caribbean Sea Example";
 "author" = "Jussi Härkönen";
 SOLID black();
 BUFLOAD bl();
 MAP map(black, bl);
 GL gl(map);
 BUFSAVE bs(gl);
)

The header definition contains some string fields above the module. The name of the
scene is specified by the "name" field and the author by the "author" field as
defined above.

A SOLID module black is created to be used as a background for the MAP
module1 map. A BUFLOAD module bl is used to load the screen output from previous
render(). Furthermore, it is used as input module for the map module. The GL module
gl is used to draw the waveform onto map. Finally, the BUFSAVE module bs is used to
save the gl module to be loaded from bl in next render(). As bs (that equals gl) is
the last module defined, it is shown on the screen.

3.1.2 Variable Definitions
// Loop index
int i;
// Temporary x coordinate value
float x;
// Loop indices for the MAP module
int xix, yix;

1 Actually black is not necessarily needed and bl could be used instead as the
background for map. bl is always initialized to black when the scene is loaded.

 R4 Programming Tutorial

6

// Coefficient for map flow magnitude
const float MAP_FLOW = 0.1;
// Wave height scale
const float WAVE_SCALE = 0.2;

The integer variable i will be used as a for loop index for a loop drawing the waveform.
The floating point number x is used in the same loop to store the x coordinate value. The
integers xix and yix (x index and y index) will be used in the two for loops that
initialize the map module.

The constant MAP_FLOW defines the speed of flow of the flowfield. WAVE_SCALE
defines the amplitude of the waveform.

3.1.3 Initialization
void init() {
 // Do not correct for aspect ratio
 gl.aspect = false;
 // Set shader
 strcpy(gl.shader,"W3.5;");

 // Initialize map
 for (yix = 0; yix < 24; yix = yix + 1) {
 for (xix = 0; xix < 32; xix = xix + 1) {
 // Set map flow speed in vetical direction
 map.y[yix][xix] = -MAP_FLOW * sign(yix – 11.1);

 // Set color attenuation
 if (yix < 12) {
 // The lower half
 map.r[yix][xix] = 0; // Filter all red
 // Filter green progressively
 map.g[yix][xix] = yix/12.0;
 map.b[yix][xix] = 1; // Do not filter blue
 }
 else { // (yix >= 12)
 // The upper half
 // Filter red progressively
 map.r[yix][xix] = (24 - yix)/12.0;
 map.g[yix][xix] = 0; // Filter all green
 map.b[yix][xix] = 1; // Do not filter blue
 }
 }
 }
}

First, we set the aspect data member of gl to false. This causes gl to not correct for
the aspect ratio. If it was set to true, gl would transform the bl input module into a
rectangular shape. Then we set the shader string of gl. The W character makes gl draw
wireframes, that is, objects only consisting of lines. As we are only going to draw lines,
this sounds pointless. However, this allows us to define the line width for the waveform
as the number after W.

The map module is initialized in two loops inside each other – one for x and one for
y coordinate. As map contains a 32-by-24 grid, the loop indices yix and xix go from 0
to 23 and 31, respectively.

 R4 Programming Tutorial

7

The two-dimensional data member array map.y[24][32] defines how much the
map points are offset in vertical direction. A positive offset value results in movement
downwards and a negative offset upwards. The constant MAP_FLOW1 defines the
magnitude of offset, whereas the expression sign(yix – 11.1) is -1 for yix � 11
and 1 for yix > 11. Note that if 11.0 would be subtracted from yix, the result would be
0 for yix = 11 and sign(yix – 11) would return 0. This would cause the
corresponding map points to not move at all.

In the following if-else structure, the map target colours are specified. The colour
values specify the colour to which the objects drawn to map are slowly attenuated to. The
values are stored in 24-by-32 member arrays r, g and b. For yix � 11, red is set to 0 and
blue to 1. Green is a linear function of yix. Because the point (0,0) is the lower left
corner and (32,24) is the upper right corner in map coordinates, this makes the green
colour to be attenuated less towards the vertical centre of the screen, that is, the line yix
= 11. For yix > 11, red is a linear function of yix being 1 at the centre and 0 at yix =
23.

3.1.4 Rendering
void render() {
 // Set load buffer handle
 bl.handle = bs.handle;

 // Clear the gl command queue
 gl.clear();
 // Translate so that x and y are in the interval [-1,1]
 gl.glTranslate(0, 0, -2.414);
 // Begin drawing lines
 gl.glBegin(GL_LINE_STRIP);

 for (i = 0; i < 512; i = i + 1) {
 // Calculate the x coordinate that corresponds to i
 x = 2 * i / 511.0 - 1;
 // Draw next point in the line strip
 gl.glVertex(x, WAVE_SCALE*(waveLeft[i]+waveRight[i]),0);
 }

 // Finished drawing lines
 gl.glEnd();
}

First, the handle member variable of the save buffer is saved into the load buffer
handle. This must be separately done for every render() call. After that, the
command queue of the gl module is first emptied by calling clear(). Then, the gl
coordinates are translated with the glTranslate member function so that the gl
screen x and y coordinates are in the interval [-1,1]. The glBegin function with the
parameter GL_LINE_STRIP prepares drawing a line strip. The vertices specified by the
glVertex function between glBegin and glEnd will consequently be connected
with lines. The line width was earlier specified in gl.shader.

1 Recall that negative constants cannot be specified. Consequently, MAP_FLOW is
preceded by a minus sign.

 R4 Programming Tutorial

8

The vertices of the waveform are drawn inside the loop following glBegin. First,
the x coordinate in the interval [-1,1] corresponding to the loop index i in the interval
[0,511] is calculated. Then the next vertex is drawn to a point specified by x and the
waveform value in the ith waveLeft and waveRight array cells. After the loop, the
line strip is finished by calling glEnd.

3.2 Using Textures
To illustrate how textures can be loaded, we will change the scene to draw the waveform
out of textured particles. The modified scene can be found in the file Caribbean Sea
Example with Textures.r4 in the tutorial subfolder Caribbean Sea.

Firstly, the module list in the header must be changed to
SOLID black();
TEXTURE tex();
BUFLOAD bl();
MAP map(black, bl);
GL gl(map, tex);
BUFSAVE bs(gl);

A texture module tex is added in order to load a texture file. tex is given to gl as input
module so that gl can use it for drawing.

The constant
// Ring texture size
const float RING_SIZE = 0.05;

is added to the constant definition section. RING_SIZE specifies the size of the textured
particles.

In the init() function, the initialization of gl shader is changed to
strcpy(gl.shader,"T0;B11;");

This makes the texture to be drawn additively. Also the lines
// Set texture file name
strcpy(tex.filename,"particle_ring.png");

specifying the texture file name are added to the init() function.
The render() function using textures is listed below.
void render() {
// Set load buffer handle
bl.handle = bs.handle;
// Clear the gl command queue
gl.clear();
// Set particle scale + make them face the viewer
gl.glParticleOrient(RING_SIZE);
// Translate so that x and y are in the interval [-1,1]
gl.glTranslate(0, 0, -2.414);
// Begin drawing lines
gl.glBegin(GL_QUADS);

for (i = 0; i < 512; i = i + 16) {
 // Calculate the x coordinate that corresponds to i
 x = 2 * i / 511.0 - 1;
 // Draw next point in the line strip
 gl.glParticle(x,-WAVE_SCALE*(waveLeft[i]+waveRight[i]),0,1);
}
// Finished drawing lines
gl.glEnd();
}

 R4 Programming Tutorial

9

The particle size is set by the glParticleOrient function and instead of
GL_LINE_STRIP, the glBegin function uses GL_QUADS. This is due to the fact that
texture particles consist of four points specifying the corners of the rectangular particles.

In the for loop, the loop index i is increased by steps of 16 at a time, as it is not
reasonable to draw 512 rings. The texture particles are drawn with the glParticle
function.

In general, texture dimensions should be of type n2 , where n is an integer. Also
textures of arbitrary dimension can be used, but with decreased performance.

3.2.1 Modifying the Scene
Feel free to modify the scene file. You can modify the constant values or shader string, or
add some new features to see how the scene works. You might want to see the gl.r4 file
in R4\dll to see other available gl commands. If you want to draw textured objects with
glVertex, you have to use glTexCoord to separately specify the texture coordinates
before every glVertex call.

3.3 Further Reading
When you are working with a new module, the first thing to do is to open the
corresponding definition file found in the R4\dll directory. The definition file lists all the
variables of the module and usually also contain some comments on what the variables
do. Also, included to the default R4 scenes are several scenes named
simple_<module>.r4 where <module> is a module name. These files illustrate how the
corresponding modules are used. You might find it interesting to look at and modify the
files to familiarize with the modules.

The GL module is one of the most useful ones. Basically, almost everything that
cannot be done with other modules can be done with GL. Knowledge in OpenGL or other
3D programming interface is an advantage when using GL. See gl.r4 and the OpenGL
documentation for further information.

In Appendix I you can find some common compile errors and possible causes for
them. Hopefully it will help you if you cannot find the cause of an error.

If you are looking for examples of how to use a certain module or parameter, you
can use the Find in Files… function in Crimson Editor. Select Find in Files… in the
Search menu and type the name of the module or parameter to the Find what field. Write
the folder name where you have the default custom scene files to the Folder field
(assumingly C:\Program Files\R4\data\predefine\disable). If you are looking for a
certain module, you can check the Match case box and search with an upper case module
name to only search for module definitions.

You can find interesting information and discussions at the official R4 forum at
http://www.rabidhamster.org/phpBB2/. You can also find the scenes written by other
users. If you make a nice scene, please contribute to the community by sharing it at the
forum!

 R4 Programming Tutorial

0

Appendix I – Compile errors
When an error is caught in a scene file, you will get a popup window describing the error.
The error type is printed after the text "Exception Caught : ", followed by the path and
name of the file that caused the error and two numbers separated by a colon ‘:’. The row
in the scene file where the error occurred is given by the second number. Some of the
compile errors are listed below with a short explanation.

Syntax error – wanted <floating point> – You have defined a floating-point
constant but you have not defined any decimals. Define at least one decimal for the
constant.

ID not found – You have probably tried to use a variable but no variable with the
name has been defined. You might have typed a wrong variable name or by mistake
removed the definition.

Cannot convert types (to/from) "float" "void"
Cannot convert types (to/from) "int" "void" – You assumingly are trying to insert

the return value of a void function into a variable.
Rendering Error, current = <scene file path>, next = null, fade = <fade path> –

You have assumingly not specified sufficiently many input modules for some module.
Include more input modules.

Syntax Error – wanted [’:’ Character] – a parameter might be missing in a
function call.

Appendix II – Version History
Version Changes

v1.0 • Added the version history appendix.
• Corrected an error in overlay section - header must be defined as

OVERLAY instead of SCENE.
• Added a comment about division with a constant.
• Added some comments about the dll directory to further reading

section.

